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This paper examines a class of explicit finite-difference advection
schemes derived along the method of lines. An important applica-
tion field is large-scale atmospheric transport. The paper therefore
focuses on the demand of positivity. For the spatial discretization,
attention is confined to conservative schemes using five points per
direction. The fourth-order central scheme and the family of
k-schemes, comprising the second-order central, the second-order
upwind, and the third-order upwind biased, are studied. Positivity
is enforced through flux limiting. It is concluded that the limited
third-order upwind discretization is the best candidate from the four
examined. For the time integration attention is confined to a number
of explicit Runge-Kutta methods of orders two up to four. With
regard to the demand of positivity, these integration methods turn
out to behave almost equally and no best method could be identi-
fied. © 1995 Academic Press, Inc.

1. INTRODUCTION

The subject of this paper is the numerical solution of the
partial differential equation for linear advection of a scalar
quantity w in an arbitrary velocity field u, given by

w,+ V- (uw) =0. (D

Linear advection is an important (classical) problem in compu-
tational fluid dynamics and has been the subject of numerous
investigations. The central theme is how to approximate the
advection term V - (uw), such that the resulting errors in both
phase and amplitude are minimized and the computational cost
is still affordable. An important application we have in mind
concerns atmospheric transport of chemical species. Then w
represents a concentration or density and u a wind field. In
addition to the usual accuracy and efficiency requirements, here
the main consideration is that the transported concentrations
must remain positive, because in actual applications also chemi-
cal reactions are modeled for which positivity is a prerequisite
for avoiding non-physical chemical instabilities. We emphasize
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that the demand of positivity is important and that it severely
restricts the choice of method, as it is essentially equivalent to
the demand of avoiding numerical under- and overshoots in
regions of strong variation.

The research objective of this paper is to examine a class of
positive, finite-difference advection schemes which we consider
promising for atmospheric transport applications and to select
from this class the best possible candidate. We hereby follow
the method-of-lines approach which means that the spatial dis-
cretization and temporal integration are considered separately.

For the spatial discretization we confine ourselves to stencils
using five points per (spatial) direction. We consider this a
good starting point since a S-point stencil is computationally
attractive for the following reasons. First, a 5-point stencil is
still relatively compact, which is an advantage for implementing
inflow and outflow boundary conditions. Second, a 5-point
stencil allows orders of consistency up to 4 and comprises a
number of potentially interesting spatial discretizations, viz.
the second-order central, the second-order upwind, the third-
order upwind biased, and the fourth-order central discretization.
In our investigation all four discretizations show up. We provide
them with a flux-limiting procedure to enforce positivity. Our
examination of positivity specifically involves a comparison
between a variant of the well-known third-order upwind
(k = %) discretization of Van Leer [8] (see also [5]) and the
fourth-order central discretization, both limited in the same
way. The derivation of the specific limiting procedure we use
goes along the lines of Sweby’s analysis [14].

For the time integration we confine ourselves to a number
of explicit Runge-Kutta methods of orders of consistency two
up to four. These methods are often used in the method of lines
approach for solving hyperbolic partial differential equations.
However, given a positive semi-discretization, stability of the
time integration is in general not sufficient for maintaining
positivity for the fully discrete solution. As a rule, the step size
must satisfy an additional constraint which forces the admissible
range of step size values to be smaller. Therefore, our focus is
again on the positivity property, but now for the fully discrete
solution where the limited third-order upwind discretization is
used for the spatial discretization. Both theoretical and experi-
mental results are presented.

The paper contributes to the state-of-the-art in higher-order
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TVD schemes (as reviewed in the introductory section of | lQ]),
by the application of a new limiter function, the pres.entunon
of a monotone, fourth-order central scheme for advection, .zmd
the investigation of theoretical monotonicity bounds for the .ume
steps to be applied in explicit Runge-Kutta-type calcglatlons.

The paper is organized as follows. Section 2 desc.rx'bejs th
spatial discretization and the flux limiting in ID. P()S}tl\/lt){ of
the time integration is discussed in Section 3. The 2D discretiza-
tion is formulated in Section 4. In Section 5, 2D numerical
test examples are presented. In Section 6 we summarize our
main conclusions.

2. THE SPATIAL DISCRETIZATION

The schemes are built from their one-space-dimensional
forms. Therefore, for most of the discussion it suffices to con-
sider the constant coefficient 1D problem,

w,+ =0, f=uw, u>0, (2)
which we spatially approximate, on the uniformly distributed
grid points x;, by the semi-discrete conservation form

d Fin—=Fion
a h

0. (3)
Hence, w;(t) is a continuous time approximation to w(x,, 1) at
x; = ih. We interpret w;(z) as a point value in the finite-difference
sense and we suppose a cell-vertex centered grid. F,. ), is
a numerical flux expression that determines the actual semi-
discretization. Fi; ), depends on neighboring values f, = wuw,,
such that it represents a consistent approximation to the true,
analytical flux value at the cell center, x.,\; = (x,,, + x,)/2.
Throughout Section 2 we suppose u to be constant. Note that
the constant coefficient 1D formulations are extended in a
straightforward manner to the 2D (and 3D) case, where the
velocity can be both space- and time-dependent (cf. Section 4).

2.1. The 5-Point Discretizations

Numerous semi-discrete schemes can be brought in the con-
servation form (3). In this paper, we confine ourselves to discret-
izations on 5-point stencils for the reasons outlined in the Intro-
duction. These are the second-order central, the second-order
upwind, the third-order upwind biased, and the fourth-order
central discretization. Note that to obtain a higher order discreti-
zation that fits in (3), a wider stencil would be necessary. The
first three discretizations mentioned above all belong to the
x-family that has been introduced by Van Leer for application
to the nonlinear Euler equations (see [8] and the references
therein). The numerical flux for the xk-scheme reads

I+ k
4

l-x .
Fiop :ﬁ‘*‘T(fi“fz»x)JF (fa =) (4)

where the values k = 1, — 1, and 4 correspond with the second-
order central, the second-order upwind, and the third-order
upwind biased discretization, respectively. Hence, for oyr pur-
pose, this x-formulation is very convenient. Noge that for
k = 1 a 3-point stencil suffices. However, for ¢ = 1 the
limited form needs a S-point stencil too. In a similar way we

can write the numerical flux for the fourth-order centra] scheme
il

From=f+ &=L 0+ 300 =) =5, —fi) (5)

Because later in the paper the third-order scheme will play an
important role, at this stage it is appropriate to recall its cloge
resemblance with the fourth-order central one. Both fit in the
form

LI_ w ‘f‘ c 8y H S ,/;:
dr 12h
4 , , ‘ . (6)
71 ’)/‘Lll(./' N 4/‘1 t t ()/1 o 4:;1‘1 +,/HZ
12 It '
wherey = O (fourth-order centrab) ory 1 (third-order upwind

biased). The right-hand side is the standard, central approxima-
tion to the fourth-order derivative, i,

S Ao S
ht
y | . (7)
;., ) '}/;
oo A T om,
iyt 60 ax"

Hence the upwind biased scheme is completely identical to the
central one if the Latter is applied to

woof o h (8)

and if (7) is used for the fourth-order derivative term. This
term introduces dissipation due to the minus sign. So, from the
central difference point of view, this term plays the role of
artificial diffusion, entirely similar to the case of the familiar
second-order central and first-order upwind scheme. The effect
of the artificial diffusion term, e, the precise difference be-
tween central and upwind, is nicely illustrated from simple
Fourier analysis. We introduce the trial function w(1) =
w e o N1 We find

W) (e 0 e e = ©)

where u wh, and w(é) is the numerical phase

u/h, &
velocity given by
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u(é) =ﬁ§(_43~?@s—§2u. (10)

We see that both schemes generate the same dispersion errors
because they have the same phase velocity. The only difference
is the spurious dissipation term in the upwind case. This dissipa-
tion is largest for the shorter wavelengths, where also the disper-
sion error is maximal. Hence one can argue that the upwind
scheme just damps the short wavelength errors of the central
scheme, in a manner prescribed by (9).

One might also argue that this is an advantage when solving
pure advection problems, since no finite-difference method can
resolve arbitrarily short wavelengths without excessive disper-
sion errors. Unfortunately, despite this spurious damping, the
third-order upwind scheme still suffers from under- and over-
shoot and lack of positivity in regions of truly strong variation.
In fact, in this respect there appears to be little difference
between all four schemes considered here. In applications,
merely smaller wiggles for the third-order upwind scheme are
observed, when compared with the other three. However, with
regard to positivity, all four fail.

2.2. Positive Semi-discretizations

Scheme (3) is called positive (or non-negative), if for any
non-negative initial solution {w;(z,)} (w;(t,) = 0, Vi) the evolv-
ing solution {w;(#)} remains non-negative for all t = 1,. Obvi-
ously, a scheme is positive, if and only if for all i and all 1 = 7,

wi(t)y =0, wj()=0, Vj¢i:—‘iw,(r)_>_0. (1

dt

If we check the above four schemes for this condition. their
lack of positivity follows immediately. Lack of positivity is of
course intimately related to undershoot and overshoot. This can
be concluded from the following observation. Let a, 8 be
arbitrary real constants and consider the linear transformgtion
w,(t) = av,(t) + B. Suppose that F,., satisfies the linear
invariance property

Fion(wi (D} = aFp{ui(n}) + Bu. (12)

Then v, (1) is also a solution of scheme (3), s0 that undershoot
is equivalent to overshoot, simply because the graph of the
solution of (3) can be folded around and shifted upward z?nd
downward in an arbitrary way, according to the trgns_forrqauon
wi(t) = aw,(1) + B. For constant velocity u the limiter (1qtro—
duced below) does not affect this property. Note that w.1th a
divergence-free velocity field, the advection ‘p‘roblem (1) itselt
is also linearly invariant. Therefore, a positive scheme that
satisfies (12) exhibits no under- and overshgots. '

To achieve positivity we apply flux limiting. Consider the
general flux expression

Fo.=f+ i, RN Il AR [ART

with limiter ¢. This limiter is supposed to be a nonhinear fune
tion of neighboring fluxes that defines a high order accurute
scheme in smooth monotone regions of the solution, where no
wiggles will arise, whereas in regions of shurp gradients the
limiter must prevent wiggles and thus enforce monotonicity
and positivity. This means that ¢ is to work as a nonlinear
switch between a high order scheme and a low order, positive
one. Note that for ¢ = 0 the first-order upwind scheme 1s
recovered. which is positive. Following Koren {3]. we have
adopted the limiting procedure that has been proposed by
Sweby [14]. However. other limiting procedures exist that can
be followed, too (see. e.g., Hirsch [3]. LeVeque [9], und Zale-
sak [16]).

For the flux-limited form (13) it is straightforward to
derive a sufficient condition on the limiter ¢ to guarantee post-
tivity of the semi-discrete scheme [3]. For (131 scheme (3)
reads

d (1 + (U2 fi —f 0 — (U~ 1 0

—w + =0,
a’ h
[BEY
Let
r, l,-.: _(4—.f/. (15)
B A

and assume that f, — f, # 0, Le. r, 2 # 0. Then (141
identical to

d 1l 1 ) (2)é, s
—_W — +=-d_ | -
dr“'+/z[(l 3G o

Next. assume that r,_,,» = 0. Then (14) is also identical w (163
if we assume, a priori. that &, . = 0if r, .= 0(both fnrmt'xlue
then yield (d7dr) w, = 0, which is sensible in [hi\.cahc’), .H we
now apply the positivity rule (11)to( 16), Iheq we ll\lll’l:‘dl}l‘tc‘l_\
conclude that the flux (13) will define a positive scheme if the
bracketed term is non-negative. This is true if the limiter values
i1 and @ n satisfy the inequality

](.ﬁ - =00 (e

¢

-2 ~ 17)
- d):' n= - {
LAY

If we next replace the above a priori assumption by the stronger
assumption -1z = 0if r.» < 0. and .turthcr ,x_uppow th;x/(
always & 1n. ., = 0. then (17) is true if & . =
2risin . .

To sum up. the general numerical flux (l.\)‘gt‘mrumce\ R
positive semi-discrete solution. if the limiter & satisfies the con-

straints
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if Fiein = 0,

¢1*I/3 =0
0= d’:»l/l* ¢x’ll.‘. = 6’

(18)

bin = 2rin,

for any constant § > (. This constant may serve as a parameter.
If we take & = 2 and. in addition, if we suppose that ¢,_» and
¢,.1» can be uniquely expressed as a function value of the
respective slope ratios r,-» and ri.», then (18) defines the
TVD region given in Fig. la of Sweby [14] (for the Lax-
‘Wendroff and Beam-Warming methods). For the semi-discreti-
zation alone, however, we are free to choose any § > 0 for
obtaining positivity and by increasing § we can obtain more
accuracy near peaks; see Fig. 1. On the other hand, in Section
3 we will also support the choice § = 2 and henceforth assume
that § = 2. unless noted otherwise.

2.3. The Flux-Limited Schemes

We will associate (13) with the original higher order flux
forms (4) and (5). First we rewrite (4) to the slope-ratio formu-
lation

o1 .
FHI/Z =j: + ;K(rnlll‘)(jl ~./;"l)~
) (19)
-k 1+«
2 2

&

K(r) =

r

which fits in the general form (13). The next step is to limit
K(r) to some function ¢(r) in such a way that the constraints
(18) are satisfied for all possible values of the slope ratios,
whereas for smooth monotone solutions, where r = 1, (13) still
takes the same values as (19). Following Koren [5], we define

¢(r) = max(0, min(2r, min(8. K(r)))), §=2. (20)
This definition implies that the slope-ratio interval in which
the limiter is switched off, is maximized. The motivation behind
(20) is to use, as much as possible, the original higher order
schemes and to limit them only when really needed. However,
as far as we know, a unique best choice for all sorts of solution
profiles does not exist (see, e.g.. LeVeque [9, Section 16.2]
and Hirsch [3, Chap. 21] for other limiter definitions). Note
that for (20) no limiting is needed in the interval isSr=2%
for k = 3. in the interval 0 < r < 2 for x = 1. and in the
interval 3 < r < « for k = —1. For all other values of r
limiting is necessary to satisfy the constraints (18). Note that
for these values the limiter value &(r) coincides with the upper
boundary of the positivity region defined by (18).

In a similar vein the numerical flux (5) can be treated. We
find the slope-ratio formulation

Fop=f+Kr.n, Fioa)(fi = fi-1),

(21)
K(r.s) =%+ r—tirs.

Note that now also the forward slope-ratio ri.3» iS present.
Initially we selected the limiter (20) without any {noci.iﬁcation
(K(r) replaced by K(r, 5)). The corresponding region in (r, 5)-
space surrounding (r, s) = (1, 1), where the original fourth-order
scheme is applied, then turns out to be quite large. However, we
found that for (21), a modification of (20) towards a smaller
region leads to better results. This modified limiter is given by

¢(r, s) = max(0, min(2r, min(8, min(3
+ r, max(K(r, s), K(r, 5))))))»

S=s5=2.

(22)

To illustrate the effect of the limiting and the difference
between the four limited schemes, in [4] we show numerical
results for three 1D solution profiles (a cosine hill, a cone, and
a square). From these results it appears that the two limited
second-order schemes fall behind significantly, indicating that
the higher the order, the better the performance, even for discon-
tinuous profiles like the cone and the square, where the limiting
is expected to dominate the numerical solution substantially.
On the other hand, the results of the limited third- and fourth-
order schemes show a surprising resemblance, but the antici-
pated advantage of the higher order of the central scheme is
not borne out. The 1D tests indicate that the limited third-
order upwind scheme is the most promising one from the four
schemes discussed here. In the above experiments its accuracy
appears to be the same as that of the limited fourth-order
scheme, but the upwind scheme is slightly cheaper and can be
equipped with a similar inflow/outflow boundary scheme.

3. POSITIVITY OF THE TIME INTEGRATION

3.1. Preliminaries

In this section we discuss the question which explicit Runge~
Kutta method can be used efficiently for the semi-discrete sys-
tem (3) with limited upwind fluxes defined by (13), (20). The
main criteria for this are accuracy and positivity: for reasonable
Courant numbers v = |u|7/h the temporal error should not
influence the total error too much and the solutions should
remain nonnegative.

If the semi-discrete system is written as

4 w(t) = g(t, w(t)), (23)

dt
with vector-valued w and g, consecutive approximations w" =~
w(t,) at the time levels 1, = 1, + n7, n = 1, 2, ... are found by
computing in each step internal vectors W, and their function
values G; = g(t,-, + 7¢;, W), according to

i1

W= wn! +72 a; G, i=1,2,..5, (24)
=

followed by

e
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wh = WIT“I + TZ} b,‘G,‘. (25)

The method is thus determined by the real coefficients a, b;,

¢; and the number of stages s. It can be compactly represented
by the array

c| A
bT

with lower triangular matrix A = (g;) and with b = (b,), ¢ = (c;).

Numerical tests have been carried out on the 1D periodic
problem from [4] and on a 2D problem, for several methods
with s = 2,3, and 4. The methods have order p equal to s,
see, for instance, [2, Sections II.1, I1.4], and are given by the
following arrays:

0 0
172 {172 1] 1
0 1 12 172
RK2a RK2b
0 0
1/3 | 173 l 1
231 0 273 172 1/4 1/4
174 0 3/4 1/6 1/6 273
RK3a RK3b
0
172 | 172
121 0 12

1 0 0 1

V6 1/3 13 1/6
RK4

The two 2-stage methods are identical for linear problems. The
same holds for the two 3-stage methods. Differences in the
results are therefore caused by non-linear phenomena. Note
that the semi-discrete system obtained with limiting is highly
non-linear.

We find experimentally that for the unlimited fluxes, fgr
which the semi-discrete system is linear, we have stability in
1D for Courant numbers

vy =< 0.87 forRK2ab, »= 1.62forRK3aDb,
v < 1.74 for RK4.

For the limited fluxes the stability bounds are found to be ap-
proximately

v=|forRK2ab, »v=125forRK3ab. vr=14forRKJ,

These values for the limited scheme are only approximately
correct since the limited schemes show no very clear-cut transi-
tion from small errors to overflow.

3.2. Positivity in Time

In this subsection we shall briefly discuss some linear and
non-linear theoretical results on positivity. These will be com-
pared with experimental results in the next subsection. The
semi-discrete system (16) can be written as

%w, =y (W), — w,), (26)
with
u 1 1
W) ==\ 1+ =dip b2 27
Yiw) h( 3 Gie 2,‘,,:¢‘)

It is easily verified that (18) implies

OSy,(w)s;—’(l + 812). (28)
1

Applying the forward Euler method (RK1) to the system
(26) gives

Wil = w4 Ty (et Oe sy = wh, 29)

and from (28) it follows directly that positivity is guaranteed
under the condition

1

m‘;. (30)

V=Y =

Theoretical bounds which guarantee positivity for higher
order methods can be obtained by following the approaches of
Shu and Osher [11] on diminution of total variation (TVD) and
of Kraaijevanger [7] on contractivity. In the first approach
all stages of the Runge—Kutta method are written as convex
combinations of forward Euler type steps. Introducing

a; =0, a;=1, fori=2..s+1 (31

the method can be written as
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I

i-1
W= wl W= (a W+ m8,G).
=

2,3, s+ 1, wr=We,

with coefficients

i1

= a,-,- - Z a[kakjs anI‘j =
k=i

b;.

J

By (32)

If all B, = 0 it can be shown, just as for Euler’s method, that
we have positivity for Courant numbers,

min

1=j<=s+

v=1y

104,-,/,8,,-.

Here v, is the threshold value for Euler’s method and
a;/B; = + in case B; = 0.

Since contractivity results can also be obtained this way,
even for all stages, it follows from Theorem 4.2 in [7] that in
order to have all 8; = 0 and «;/3; > 0 it is necessary that

a; >0, b;>0 foralli=1,2,.,8j=1.,i—1L
This condition is not satisfied for the methods RK2a, RK3a,
and RK4. For the remaining methods RK2b, RK3b it is easy
to see that we can achieve the minimum of «;/8; to be I.
From the linear results below it follows that this is optimal.

Summarizing, we thus have ‘‘nonlinear positivity’’ in 1D if

1
2 3
Yy for RK1, RK2b, RK3b,

0

v=E

(33)
for RK2a, RK3a, RK4.

The nonlinear results are based on worst-case assumptions
for all stages. If we assume that y;(w) in (26) remains almost
the same over the stages, the situation will probably be de-

FIG. 1.
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scribed more accurately by a linear theory. Therefore, consider
the system with “*frozen coefficients’’

d _
—w; = ¢i(w;

u
—w), 0=¢=- ,
; w;) C h(1+5/2)

(34

where ¢; = y;(w(t,)) for t,., =t = 1,. On this system we can
apply the linear theory of Bolley and Crouzeix [1]. From their
Theorem 2 it can be deduced that we will have positivity for
(34) under the condition v =< v,/C, where v, is the threshold
for Euler’s method and C is the largest nonnegative number
such that the stability function and all its derivatives are nonneg-
ative on the interval [—C, 0]. In [6, Theorem 2.2] it was shown
that C = 1 for any method having order p = s. Hence for all
methods considered in this section we get the same condition
for *‘linear positivity,”” namely

= for RK1, RK2a,b, RK3a,b, RK4.  (35)

1
1+ 6/2

For 2D problems theoretical bounds can be obtained in a similar
way. If u, v > 0, for example, the semi-discrete system can
be written as

dt (36)

Wy = ’}Iij(w)(wi—l.j - Wij) + 54(W)(Wi.j—| - Wij),

see Section 4, and the same conditions (33), (35) as in 1D are
obtained if we define

v={(lul+ |v|)t/h. (37)

3.3. Tests on Positivity

In this subsection some numerical tests on positivity are
given in 1D and 2D. The aim is to find out which Runge-
Kutta methods are suitable to be combined with flux limiting
and which value of & should be used in the limiter.

As said in Section 2, our choice is § = 2. We note, however,

Solution for cone profile, h = &.
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TABLE I

v-Values for Positivity, 1D, h = 5

=2 =106
RK2a,b 1 0.5
RK3a,b 0.79 0.39
RK4 1.37 0.78

that for the accuracy of the semi-discrete system it would be
preferable to take a larger &, since this means that the underlying
third-order scheme is used more often. Especially near peaks
this gives a somewhat improved accuracy. In Fig. 1 the solutions
obtained with RK4 at ¥ = $ can be found for the 1D, periodic
cone problem from [4]: (a) without limiting, (b) limiting with
6 = 2, and (¢) limiting with § = 6. The maximum errors are
0.24 for (a), 0.35 for (b), and 0.30 for (¢c). More 1D experiments
are carried out with the block and cone profile. Due to machine
precision, the limiter does not completely avoid negative values
(the limiter is not turned on exactly at the moment it should).
On a SUN SPARC workstation with double precision Fortran
these negative values are of order of magnitude 107", The
criterion for positivity is therefore taken as >—10"". The nu-
merical results in Table I for the limiters with § = 2 and § =
6 have been obtained for the block profile with # = 155. The
values v given here are the maximal Courant numbers for which
we find nonnegative numerical solutions at time 7 = 1. The cone
profile and other /1 values give positivity for similar Courant
numbers (almost the same with § = 6 and the 4-stage method,
exactly the same in all other cases).

For & = 6 there is no very clear threshold for the 4-stage
method. In the other cases a very distinctive threshold does
exist. From Table 1 it can be concluded that the limiter with
& = 6 requires much smaller time steps to maintain positivity
than its § = 2 counterpart. This cancels the better accuracy
property of the § = 6-limiter: if we want to increase accuracy
of the § = 2 results, while maintaining positivity, it turns out
to be computationally cheaper to decrease h than to increase
. For example, the accuracy for § = 6, h = g is comparable
to the accuracy for § = 2, h = s, and the latter case produces
positive solutions with step size T almost twice as large as the
first case. For this reason, in the remainder we only consider
the flux limiter with § = 2.

Concerning the choice between the various Runge-Kautta
methods, the result of Table I is clearly in favor of the RK2
methods, which, after all, are twice as cheap as RK4. On the
other hand, RK4 seems better than the RK3 methods. However,
the differences vanish if we also take into account accuracy.
In order to have a temporal error significantly smaller than the
spatial error we should take approximately » = 1 for RK4 and
v = § for the RK2 methods, see Table II, whereas both RK3
methods give accurate results for Courant numbers equal to
their positivity thresholds. Comparing RK4 with 7 = h, the

two RK3 methods with 7 = A/1.33 and the RK2 methods with
T = h/2 (the same amount of work for all five methods), one
observes that the methods give comparable errors, with a slight
disadvantage for the 2-stage methods.

For completeness we still consider the simplest time integra-
tion method, RK1, the forward Euler method. The results ob-
tained by this scheme are excellent for the block profile, but
abominable for all other profiles. There is a very strong tendency
to turn all profiles into blocks or staircases. This is caused by
the fact that the k = §-scheme is unstable in combination with
forward Euler. Consequently, the limiter is often turned on and
all accuracy is lost. We note, however, that the solutions are
positive at Courant numbers v < 3 for § = 2, and at v < % for
S = 6, in agreement with the theoretical prediction (30).

It is clear that for the other Runge—Kutta methods neither
Criterion (33) nor (35) gives a good agreement with the experi-
mentally found bounds of Table 1.

Since the 1D experiments are inconclusive for the choice of
the Runge—Kutta method, the same positivity test is performed
in 2D with 6 = 2, a constant velocity field u = v = —1 and
a uniform grid with mesh width h = & in both directions. The
initial profile is chosen as the cylinder used in Example | in
Section 5.1. The output point is 1 = 0.25. The behavior of the
methods is different from that in 1D, but not in accordance
with the theoretical conditions (33) or (35). Table III gives the
Courant numbers v = (|u| + |v|)7/h needed for positivity.

For the 2- and 3-stage methods again a rapid transition is
observed from truly negative values to —107'®. However, for
RK4 the minima remain negative, although small in absolute
value. The fact that RK4 fails to produce positive solutions for
reasonable Courant numbers makes the method less suited than
the others in case positivity and mass conservation are crucial.
In such a situation the explicit trapezoidal rule RK2b with
Courant restriction v < % can be recommended, due to its
simplicity and the fact that it is supported by the non-linear
theory. However, in most applications there will be a back-
ground concentration, in which case very little undershoot will
do no harm. This allows larger Courant numbers, making the
higher order methods more attractive, see Table IL.

4. THE 2D FORMULATION OF THE («x = %-SCHEME

The 1D schemes are easily extended to the multi-dimensional
case. Here we consider the 2D problem

w, + (uw), + (vw), = 0. (38)
The semi-discretization is the 2D equivalent of (3)
d Fion, = Fiong  Fion — Fijoin
—w; + ; + = =2
o w; Ax Ay 0. 39)

To save space we present the flux expressions only for the x-
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TABLE 11

L,-Errors for Cone Profile, & = s

I/ RK2a RK2b l/r RK3a RK3b 1/ RK4

100 38E—1 .UASE+0 90 34E-1 SIE-1 73 35E -1
150 31IE—1 33E-1 100 25E-1 24E-1 80 29E -1
200 28E—1 28E—1 133 23E-1 24E—-1 100 .24E — 1
300 26E—-1 26E—1 200 25E-1 25E—-1 200 .26E—1

direction. The flux expressions for the y-direction follow in a
straightforward way. First suppose u(x, y, t) = 0. Dropping
the subscript j, we then replace (13) by

1
Fioip = s p(w; + 5 Gicin (Wi — wi))),

(Xt
Uipip = U ‘_——2 s

where ¢irip = G(risip), With rip = (Wi — w)/(w; — winy),
is the limiter value defined by the limiter function (20) with
K(r) = (1 + 2r)/3. Hence, the only difference with (13) is
the variable velocity u;., in front of the bracketed solution-
dependent expression. The form (40) is called the state interpo-
lation form.

An alternative is to keep the original form (13), by putting
Jfi = w;w; (flux interpolation). It is not clear which form is to
be preferred. In both cases the linear invariance property of
the advection problem is lost. However, considering the semi-
discrete system, when using state interpolation the linear trans-
formation w;(t) = av,(t) + B leaves this semi-discrete form
unchanged, except for a remainder term which is just the sec-
ond-order central discretization of u,:

d 1 1
‘(5 v; + ; [{me (Ui + 'i G in(v; — U.‘-l))}
1
- {Mi—|/2<vr~| + 5 bV — Ui~2)>}] (41)

Uivip 7™ Ui-ip

P =0.

(40)

+ Ba™

In 2D we expect this numerical divergence term to be small

TABLE I1I
v-Values for Positivity, 2D, h = &

RK2a RK2b  RK3a RK3b RK4

0.66 0.67 0.86 0.78 <0.1

for a divergence-free velocity field. Note that the slope ratios
ri.1n» and hence the limiter values ¢;,,,, have not changed.
For the original flux interpolation formula (13) the counterpart
of (41) is more complicated, because for flux interpolation the
slope ratio expressions do change under the linear transforma-
tion. In addition, in this case also the divergence term u, is
discretized by the upwind method and hence concentration-
dependent limiter values are introduced in the numerical diver-
gence term, which is unphysical. On the other hand, a disadvan-
tage of (40) is that the third-order consistency is lost (in smooth
monotone regions, where ¢, = K(r;. ;). This is illustrated
by the modified equation of the state interpolation form
which reads

W, + (MW)_\. = —%hz(wur,\xx + 3W\M” + 2W\\u\‘) + O(h}) (42)
For u(x, y, t) < O the counterpart of (40) is given by
1
Fiop = upwiy + 5 Givin(Wiv 1 — W),
(43)

_ Xivp T X
Uipjp = U 2 s

where ¢ip = d(1/r,.3p). For arbitrary velocity u = u(x, y, t)
we then get the usual upwind form

Fioip = max(uicin, 0)F [ 1p + min(uiin, 0)F vy, (44)
with F7, given by (40) and F;,,, by (43). Recall that (44)
comprises four different sign cases for the associated semi-
discrete scheme (3). For all four cases positivity can be proved
by a straightforward application of (11).

We conclude this section with a description of our implemen-
tation of inflow/outflow boundary conditions. We hereby sup-
pose a vertex-centered grid, so the location of a domain bound-
ary always coincides with a grid point. Again it suffices to
consider the 1D problem. Suppose that x,, is the left boundary
point. If u, = 0 we then have inflow, with given velocity and
state, and otherwise outflow with a given velocity only. In case
of inflow, scheme (3) is applied for i = I, so that only for
i =1 an auxiliary variable w_, needs to be introduced for the
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flux computation Fy;, defined by (40). We use the second-order
extrapolation w-; = max(3wy — 3w, + w,, 0). Note that this
would result in the second-order central discretization at
x = x, if the limiting is switched off and if u;, = uy,. In the
exceptional case of uy = 0 and u,,, < 0, Fy; is computed by
(43), where w., does not occur. Hence we then act as if we
have an (outflow) Dirichlet condition. Next consider the outflow
situation. Then scheme (3) is applied for i = 0 and an auxiliary
flux computation F., defined by (43) is introduced. F_,, then
uses the auxiliary state variable w_, introduced above. The
auxiliary velocity u-, is defined by the second-order extrapola-
tion u_y;, = min((15u, — 10u; + 3u,)/8, 0). Assuming a constant
velocity and no limiting, the outflow scheme defined this way
is just second-order upwind. In the exceptional event of u,,, >
0 and u, < 0, F,, is computed by (40) which then also uses
the auxiliary variable w_,.

5. NUMERICAL 2D EXAMPLES

In this section we apply the positive upwind-RK advection
scheme to three 2-space-dimensional example problems. In [15]
other tests are performed and a comparison with various other
numerical advection schemes is given [15, Chap. 15].

5.1. Example 1: Solid Body Rotation

Our first example is concerned with a standard test used by
many authors, the so-called Molenkamp—Crowley test or solid
body rotation. In Eq. (38) we let 0 < x, ¥y = | and put
u(x, y, t) = 2m(y — %), v(x, y, t) = —27(x — %). Note that
u is constant in the x-direction and v is constant in the y-
direction. For any given function &, the solution can be ex-
pressed as w(x, y, t) = (X, Y), where

X = cosmt)(x — §) — sin Qut)(y — %), 45)
Y = sin(2mt)(x — ) + cosmt)(y — 3). ‘

Hence ®(X, Y) rotates with period 1 around (3, 3) in the clock-
wise direction. For ®(X, Y) we make two choices, viz. a cylinder
and a cone with height 1 and radius 0.1, both centered at (34
at r = 0. For both solutions, one full rotation is carried out on
the uniform grid having 80 X 80 grid cells, using step size
T = h/3 for the RK4 method, which corresponds roughly with
a maximal Courant number 2, the Courant number being defined
by (37). Note that this maximal value violates the bound given
in Section 3.1. However, as the maximum value occurs near
the boundary, no instability results since in a sufficiently large
neighborhood of the boundary the solution is zero.

The computed solutions at + = 1 are shown in Fig. 2. The
solutions are positive and accurately centered around the pqmt
(3, 2). We consider the accuracy of the cylinder computation
very satisfactory (maximum value is 0.999). For the cone we
observe the same clipping problem as observed in 1D [4]. Npte,
however, that in 2D the clipping is stronger than in 1D, since

the clipping occurs once for every grid line Iving under the
cone. The position of the top of the computed cone comcides
with the center point (z, %), but the maximum value has decreased
to 0.66. The cone obviously needs a much finer grid. Grids
with local refinements suit very well for that purpose: see {4]
for solutions obtained on such grids. In [15]. the performances
of various numerical methods are extensively compared for the
solid body rotation with perfectly smooth initial solution.

5.2. Example 2: Inflow/Outflow Problem

In Example | there is no inflow or outflow, since the solution
is zero in a neighborhood of the boundary. To test the boundary
scheme, we carry out a semi-rotation around the center point
(3, 0), with the cylinder on the 80 X 80 grid for the wind field
u=2my,v = =27(x — 3) and starting with the lower boundary
point (4, 0) as center point for the cylinder. At 1 = () we then
have inflow at (4, 0) and at r = % outflow at (4. 0). In this case
the step size 7 = h/6 corresponds with a maximal Courant
number 2. Inspection of Fig. 3 shows that the boundary scheme
works accurately for this example.

5.3. Example 3: Spherical Advection over the Poles

The present example has been borrowed from [13]. Tt deals
with advection on the sphere with (scaled) radius 1. The corre-
sponding advection equation in conservation form is given by

- (46)
dt  cosy | dx av

aw N l [d(uw) n d(uw‘cos _\')jl -0,
where x € [0, 27] and v € [~#/2, w/2] are the longtitude and
latitude coordinates in radians, and « and v are the wind veloci-
ties in x- and y-directions. Note that we now consider a pure
initial value problem. The «-scheme applied to (46) on a uni-
form grid in the (x, y)-plane reads

dw -1
- = - [Fron, — Fon,

dt hcos y; (47)

+ 008 Vo inFo o —cos v, F ol

with Fi.p,. Fi -2 as before. The relevant 1D Courant num-
bers are

v —
(P )ei = Lol ()0 =

hcosy,

A difficulty is that v increases when approaching the two
poles. provided the wind field crosses the poles, of course. Such
a wind field is given by u(x. ¥) = 2 cos x sin v, v(x. V) =
—27 sin x. As in [13] we consider a (cell-centered) 128 X 64
grid, and the time-integration interval [0, 1]1s covered in 5120
steps. This gives a maximal Courant number =1 near the poles.
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b

FIG. 2. Computed profiles for the rotational flow field of Example 1: (a) cylinder; (b) cone.

but outside the polar regions we get small Courant numbers
and so there limiting with & > 2 is attractive (see Section
3.3). Along with our limiter with fixed § = 2 we therefore
also consider

1 - V>

v+e/)

with a small & to avoid zero-division. This is applied in a
1D fashion with the above Courant numbers. (Note that
inequality (35) is equivalent to 6 =< 2((1 — v)/v) and we
take the maximum of this with 2 to avoid small § values
near v = 1.)

The tests are performed with cone- and cylinder-shaped ini-
tial profiles (the latter with background concentration). Both

S= 2max<1, (48)

FIG. 3. The computed profile for the semi-rotation of Example 2.

profiles have center (7/2, 0) and a radius corresponding to
seven grid points:

r(x,v) = 2V(cos(y) sin(a(x — 7/2)))* + (sin(3y))?,

R = Tm/64,
Cone:  c¢y(x,y) =max(0, I — r(x,y)/R),
Cylinder: ¢y(x,y) =2 ifr(x,y) =R,
=] otherwise.

At time 1 = | this profile has completed one full rotation with
the trajectory over both poles. The time integration is done
through the second-order method RK2b (see Section 3.1). We
consider three k = § schemes, viz. the scheme without limiting,
the scheme with § = 2-limiting, and the scheme with variable
limiter value & given by (48). In order to compare the results
with those in [13] we consider the same error measures and
include results obtained by the first-order upwind (donor-cell)
scheme. Numerical results are given in Table IV. Along with
the error measures of [13] we also give the CPU times on an
SGI workstation (single precision Fortran) and the scaled CPU
times, denoted by CPU’, with respect to the donor-cell algo-
rithm.

These results are to be compared to the tests in [13] for
the Eulerian MPDATA schemes. The MPDATA-1,1,0 scheme
corresponds to the donor-cell scheme. The x = -schemes ap-
pear to be somewhat more accurate and considerably cheaper
than the third-order MPDATA schemes.

Comparison with the semi-Lagrangian methods in [13] is
favorable for the latter ones (except for mass conservation).
There is no CFL restriction with such schemes, so that the small
time steps necessary with Eulerian schemes can be avoided. On
the other hand, these small time steps are caused by the grid
(clustering near the poles), rather than by the problem. Larger
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TABLE IV

Results for One Revolution over the Sphere, 5120 Time Steps

CPU
EMIN EMAX ERRO ERRI ERR2 (min) CPU'
Cone tests
Donor-cell 0 -0.83 0.063 0 -0.86 5.8 1
Non-limited k = % -0.03 —-0.16 0.012 0 =0.11 15.8 2.7
Limited k = 4, § = 2 0 -0.26 0.015 0 -0.19 29.6 5.0
Limited x = §, § = 2 max (1, ; V> 0 —-0.20 0.011 0 =0.15 353 6.0
€
Cylinder tests
Donor-Cell 0 -0.30 0.067 0 -0.023 42 1
Non-limited k = } -0.03 0.071 0.030 0 0.005 114 2.7
Limited k = §, § = 2 0 -0.001 0.038 [¢] 0.007 14.1 33
Limited & = 4 8 = 2 max (1, ‘ ; ”) 0 0 0.029 0 0.007 16.1 38
14 &

Note. The values for the error measures are set to 0 if they approach roundoff (107°).

time steps can be taken on a reduced grid, where grid cells
near the poles are merged. In a forthcoming report these matters
will be addressed.

Note that the CPU times for the cone tests and cylinder tests
differ significantly. This is due to the fact that with the cone
tests no background concentration is present. Due to numerical
diffusion very small values wi; will arise, which are viewed as
underflow values.

For completion we give the formulae for the error measures
used here:

min(w};) — min{(w!;)

EMIN = 0 ,
max(w;;)
EMAX = max(wg;) — max(ng
max(w?/, B
ERRO = (2 COs()0vT, = wi))”
(2,;,- cos(v,))" max(w!,) ,
ERRI = 2, cos(ywly
2i,,' cos(y;)w!;
ERR2 = 2, cos(y)wh )

2i.j cos( ,Yj)ng )

To conclude, in Figs. 4a,b iso-line plots are given of the cone
and cylinder solutions obtained through the limited « =
$-scheme with & according to (48). For good comparison pur-
poses, we use the same figure layouts as in [13]. The exact
cone and cylinder are depicted by dashed isolines. In the graph
for the cone, the isoline values considered are 0.1, 0.2, ... up
to and including the maximum decimal value found. In the

graph for the cylinder with background concentration, this is
1.1, 1.2, ...

6. CONCLUSIONS

For the spatial discretization we have considered four (direc-
tionally split) 5-point discretizations in conservation form, viz.
the second-order central, the second-order upwind, the third-
order upwind biased, and the fourth-order central discretization.
The first three schemes are well-known members of the family
of k-schemes. Positivity is achieved by flux limiting, using (20)
for the three x-schemes and (22) for the fourth-order scheme.
The limited third- and fourth-order discretizations perform
equally well and outperform the two limited second-order ones.
For general use we recommend the third-order discretization
limited by (20). This combination possesses very good shape-
preserving properties, in 1D as well as in 2D. No 3D experi-
ments have been carried out, but we expect the behavior in 3D
of this combination to be as good as in 2D.

FIG. 4.
2 max(l, (I — »)/(v + &)) (solid lines), and exact (dashed lines): (a) cone;
(b) cylinder (with background concentration).

Isoline distributions, Example 3, limited k = 3-scheme with § =
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For the time integration we have examined a number of
explicit RK methods, viz. the second-order method of Runge—
Kutta (RK2a), the second-order explicit trapezoidal rule
(RK2Db), the third-order methods of Heun (RK3a) and Fehlberg
(RK3b), and the classical fourth-order method (RK4). We have
tested analytical results on positivity from the linear theory of
[1] and the nonlinear theory of [11, 12]. Our tests indicate that
for the current application both theories are of limited practical
value. With regard to positivity, all methods tested turn out
behaving about the same and no clearly best method could be
identified. For example, we have not found a notable difference
in positivity and accuracy/efficiency performance between the
second-order explicit trapezoidal rule, which fits in the nonlin-
ear theory, and the classical fourth-order explicit method, which
does not fit. For strongly varying solutions the behavior of the
combined spatial—-temporal scheme is apparently dominated by
the spatial discretization where the limiting procedure plays a
decisive role.
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